Menü ausblenden
Menü ausblenden   Internetchemie   |     About   |   Kontakt   |   Impressum   |   Datenschutz   |   Sitemap
Menü ausblenden   Chemie Index   |   Chemie-Lexikon   |   Chemikalien   |   Elemente
Menü ausblenden   Geräte + Instrumente   |  
Menü ausblenden   Jobbörse, Stellenangebote   |  
Menü ausblenden   Crowdfunding Chemie   |     Text veröffentlichen
Home und Neuigkeiten
Chemie A - Z
Produkte, Geräte für Labor und Industrie
Chemikalien und chemische Verbindungen
Stellenbörse für Chemie-Jobs
Impressum, Kontakt
Crowdfunding Chemie

 

Chemoresitiver Verbundwerkstoff für Kohlendioxid-Sensoren

Ein neues Material ändert seine Leitfähigkeit, je nachdem wie hoch die CO2-Konzentration in der Umgebung ist. Die Forschenden, die es entwickelten, stellten damit winzige und sehr einfach aufgebaute Sensoren her.




Abbildung: Der winzige CO2-Detektor der ETH-Forschenden - Ein Chip mit einer dünnen Schicht des Polymer-Nanopartikel-Verbundmaterials. [Bildquelle: Fabio Bergamin / ETH Zürich]
Chemoresistiver Kohlendioxid-Sensor

Materialwissenschaftler der ETH Zürich und des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam entwickelten einen neuartigen Sensor, der Kohlendioxid (CO2) messen kann. Er ist viel kleiner, einfacher konstruiert und braucht sehr viel weniger Energie als bestehende Sensoren, von denen er sich im Funktionsprinzip komplett unterscheidet. Der neue Sensor besteht aus einem neuentwickelten Verbundwerkstoff, der mit CO2-Molekülen wechselwirkt und in Abhängigkeit der CO2-Konzentration in der Umgebung seine Leitfähigkeit ändert. Die ETH-Wissenschaftler haben mit dem Material Sensor-Chips gebaut, mit denen sie mit einer einfachen Messung des elektrischen Widerstands dieKohlendioxid-Konzentration eruieren können.

Grundlage des Verbundwerkstoffs sind kettenförmige Makromoleküle (Polymere), die sich aus bestimmten Salzen zusammensetzen. Diese Salze heissen ionische Flüssigkeiten und sind bei Umgebungstemperatur flüssig und leitfähig. Die daraus hergestellten Polymere haben den für Laien irreführenden Namen 'polyionische Flüssigkeiten' - obschon sie nicht flüssig, sondern fest sind.

 

Unerwartete Eigenschaften

Aus unterschiedlichen Beweggründen - darunter die Batterieforschung und die Kohlendioxid-Speicherung - untersuchen Wissenschaftler weltweit derzeit diese polyionischen Flüssigkeiten. Aus dieser Forschung ist bekannt, dass polyionische Flüssigkeiten CO2 adsorbieren können. "Wir fragten uns, ob wir diese Eigenschaft ausnützen könnten, um Informationen über die CO2-Konzentration in der Luft zu erhalten und damit einen neuen Typ von Gassensoren zu entwickeln", sagt Christoph Willa, Doktorand am Laboratorium für Multifunktionsmaterialien.

Erfolgreich waren Willa und Dorota Koziej, Oberassistentin am selben Laboratorium, schliesslich, indem sie die Polymere mit bestimmten anorganischen Nanopartikeln mischten, die ebenfalls mit CO2 wechselwirken. Aus den beiden Materialien stellten die Wissenschaftler einen Verbundwerkstoff her. "Weder das Polymer noch die Nanopartikel einzeln sind elektrisch leitend", sagt ETH-Doktorand Willa. "Doch als wir die beiden Komponenten in einem bestimmten Verhältnis mischten, nahm die Leitfähigkeit rapide zu."

 

Chemische Veränderungen im Material

Nicht nur dies verblüffte die Wissenschaftler. Auch waren sie überrascht, dass die Leitfähigkeit des Verbundwerkstoffs bei Umgebungstemperatur CO2-abhängig ist. "Bisher bekannte, sogenannte chemoresitive Materialen zeigen diese Eigenschaft erst ab einer Temperatur von mehreren hundert Grad Celsius", so Dorota Koziej. Aus bisherigen chemoresistiven Materialien gebaute Sensoren mussten deswegen auf eine hohe Betriebstemperatur geheizt werden. Beim neuen Verbundwerkstoff ist dies nicht nötig, was die Anwendung deutlich erleichtert.

Wie die CO2-abhängige Veränderung der Leitfähigkeit zustande kommt, ist noch nicht im Detail geklärt. Die Wissenschaftler fanden jedoch Hinweise darauf, dass es an der Grenzfläche zwischen den Nanopartikeln und des Polymers auf der Nanometer-Skala zu chemischen Veränderungen kommt, wenn CO2-Moleküle anwesend sind. "Wir vermuten, dass diese Effekte die Mobilität der geladenen Teilchen im Material verändern" so Koziej.

 

Atemluftmessgeräte für Taucher

Mit dem neuen Sensor können die Wissenschaftler die CO2-Konzentration in einer grossen Bandbreite messen: von der Konzentration in der Erdatmosphäre von 0,04 Volumenprozent bis zu 0,25 Volumenprozent.

Bestehende Kohlendioxid-Messgeräte funktionieren meist optisch und nutzen die Tatsache, dass Kohlendioxid Infrarotlicht absorbiert. Im Vergleich mit diesen Geräten können nach Angabe der Forschenden mit dem neuen Material sehr viel kleinere, portable Geräte entwickelt werden, die ausserdem weniger Energie benötigen. "Denkbar sind etwa portable Geräte zur Atemluftmessung für Taucher, Extrembergsteiger oder medizinische Anwendungen", so Koziej.


Zusatzinformationen:

Christoph Will, Jiayin Yuan, Markus Niederberger und Dorota Koziej:
When Nanoparticles Meet Poly(Ionic Liquid)s: Chemoresistive CO2 Sensing at Room Temperature.
In: Advanced Functional Materials; online erschienen am 16. März 2015, DOI 10.1002/adfm.201500314

Quelle: Eidgenössische Technische Hochschule Zürich (ETH Zürich)

 


Aktualisiert am 08.06.2015.



© 1996 - 2024 Internetchemie ChemLin














Akzeptieren

Diese Website verwendet Cookies. Durch die Nutzung dieser Webseite erklären Sie sich damit einverstanden, dass Cookies gesetzt werden. Mehr erfahren