Menü ausblenden
Menü ausblenden   Internetchemie   |     About   |   Kontakt   |   Impressum   |   Datenschutz   |   Sitemap
Menü ausblenden   Chemie Index   |   Chemie-Lexikon   |   Chemikalien   |   Elemente
Menü ausblenden   Geräte + Instrumente   |  
Menü ausblenden   Jobbörse, Stellenangebote   |  
Menü ausblenden   Crowdfunding Chemie   |     Text veröffentlichen
Home und Neuigkeiten
Chemie A - Z
Produkte, Geräte für Labor und Industrie
Chemikalien und chemische Verbindungen
Stellenbörse für Chemie-Jobs
Impressum, Kontakt
Crowdfunding Chemie

 

Dolomit unter Hochdruck

Neue Erkenntnisse zum Dolomit im Erdinneren - Wie Kristalle unter hohem Druck ihre Strukturen ändern.




Abbildung 1- Strukturmodell des Dolomit-III: Es handelt sich um ein Polymorph des natürlichen Dolomits, das im Sedimentgestein zahlreicher deutscher Mittelgebirge und in den Alpen enthalten ist. [Bildquelle: Prof. Dr. Leonid Dubrovinsky, Universität Bayreuth]
Dolomit-III

Abbildung 2 - Prof. Dr. Leonid Dubrovinsky (li.) und sein Mitarbeiter Ilya Kupenko M.Sc. im Bayerischen Geoinstitut (BGI), einem Forschungszentrum der Universität Bayreuth. [Foto: Prof. Dr. Leonid Dubrovinsky, Universität Bayreuth]
Prof. Dr. Leonid Dubrovinsky

Viele hundert Kilometer tief in der Erde können die gleichen Mineralien andere kristalline Strukturen als auf der Erdoberfläche haben. Dank ihrer Wandlungsfähigkeit bewahren sie ihre thermodynamische Stabilität trotz der hohen Drücke, denen sie im äußeren und inneren Erdmantel ausgesetzt sind.

Ein Beispiel ist das Dolomit, ein weltweit häufig vorkommendes Karbonatmineral.

Eine internationale Forschungsgruppe mit Prof. Dr. Leonid Dubrovinsky (Universität Bayreuth) berichtet in den PNAS - den Proceedings of the National Academy of Sciences der USA, siehe unten - über Experimente, die zeigen, in welchen kristallinen Strukturen Dolomit im Erdinneren 'überlebt'.

Dolomit ist im Sedimentgestein zahlreicher deutscher Mittelgebirge und in den Alpen enthalten. Ebenso wie die italienischen Dolomiten mit ihren stark dolomithaltigen Sedimenten verdankt es seinen Namen dem französischen Geologen Déodat de Dolomie. Dolomit existiert ausschließlich in Form von Kristallen, die sich aus Calcium, Magnesium und Karbonatgruppen zusammensetzen. Diese chemischen Bestandteile bilden unter den Druckverhältnissen auf der Erdoberfläche und in der Erdkruste eine kristalline Struktur trigonaler Symmetrie.

Bisher ging die Forschung von der Annahme aus, Dolomit könne hohen Drücken, wie sie im Erdmantel herrschen, nicht standhalten und würde in die Karbonatmineralien Calcit (Aragonit) und Magnesit zerfallen. Doch Experimente, die am Bayerischen Geoinstitut (BGI) - einem Forschungszentrum der Universität Bayreuth - und an der Europäischen Synchrotronstrahlungsquelle (ESRF) in Grenoble durchgeführt wurden, haben diese Annahme jetzt widerlegt. Am BGI wurden Einkristalle des in der Natur vorkommenden, mit Eisen angereicherten Dolomits immer stärkeren Drücken ausgesetzt. Mithilfe einer speziellen Technik, der Röntgenmikrodiffraktion, konnten die Forscher nachweisen, dass Dolomit bei einem Druck über 17 Gigapascal nicht zerfällt, sondern seine kristalline Struktur ändert. Dadurch entsteht ein neues Polymorph, Dolomit-II genannt. Dieses Material besteht aus den gleichen Atomen wie das natürliche Dolomit. Seine Struktur hat jedoch eine deutlich niedrigere (trikline) Symmetrie.

Wird der Druck auf Dolomit-II solange erhöht, bis 35 Gigapascal überschritten sind, ändert sich die kristalline Struktur erneut. Jetzt entsteht ein weiteres Polymorph, das als Dolomit-III bezeichnet wird. Es folgt zwar gleichfalls dem triklinen Kristallsystem, doch sind auffällige Änderungen zu beobachten. Denn in den kristallinen Strukturen von Dolomit und Dolomit-II haben die Carbongruppen - bestehend aus einem Kohlenstoff- und drei Sauerstoffatomen - eine flächige Form. Doch in Dolomit-III deformieren sich die Carbongruppen und nähern sich bei steigendem Druck zunehmend einer pyramidenartigen Form an. Auf diese Weise bestätigen die Forschungsergebnisse frühere Computerberechnungen, wonach Carbongruppen in kristallinen Strukturen oberhalb von 80 Gigapascal die Form eines Tetraeders aufweisen. Anders als vorhergesagt, kommt diese Form allerdings nicht durch eine abrupte Phasenänderung zustande, sondern bildet sich in einem kontinuierlichen Prozess heraus.

"Die Forschungsergebnisse bestärken uns in der Erwartung, dass tief im Erdinneren Materialstrukturen existieren, die auf der Erdoberfläche völlig unbekannt sind", erklärt Prof. Dr. Leonid Dubrovinsky, der sich am Bayerischen Geoinstitut mit Hochdruck- und Hochtemperatur-Kristallographie befasst. "Hier liegt ein faszinierendes Forschungsgebiet vor uns, das noch manche Überraschungen bereit hält."

Gemeinsam mit den anderen Mitgliedern der Forschungsgruppe hält Dubrovinsky die neuen Einblicke in die kristallinen Strukturen des Dolomits für geeignet, das Verständnis des Kohlenstoffkreislaufs im Erdinneren weiter voranzubringen. Denn weil die Druckverhältnisse im Erdinneren sehr gut erforscht sind, lassen sich die im Experiment erzeugten und analysierten Polymorphe des Dolomits verschiedenen Tiefen im Erdinneren zuordnen. Dolomit-II existiert demnach in einer Tiefe zwischen 500 und 850 km, Dolomit-III in einer Tiefe bis zu 1.700 km. Möglicherweise haben das Dolomit und seine Polymorphe dabei eine wichtige Funktion als Transporteure von Kohlenstoff. Wenn beispielsweise bei tektonischen Prozessen zwei Platten der Erdkruste aneinander stoßen und sich die eine Platte unter die andere schiebt, wandert das im Sedimentgestein enthaltene Dolomit immer weiter in die Tiefe. Auf dem Weg in den äußeren und den inneren Erdmantel verändert es sich zunächst zu Dolomit-II, dann zu Dolomit-III. Sobald diese Polymorphe, etwa durch Mantelkonvektion, aufwärts in die Erdkruste vordringen oder sogar die Erdoberfläche erreichen, nehmen sie wieder die 'normale' kristalline Struktur des Dolomits an.


Zusatzinformationen:

Marco Merlini, Wilson A. Crichton, Michael Hanfland, Mauro Gemmi, Harald Müller, Ilya Kupenko und Leonid Dubrovinsky:
Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle.
In: Proceedings of the National Academy of Sciences; PNAS, Vol 109, Nr. 34, 21. August 2012, DOI 10.1073/pnas.1201336109

Quelle: Universität Bayreuth

 


Aktualisiert am 06.09.2012.



© 1996 - 2024 Internetchemie ChemLin






Akzeptieren

Diese Website verwendet Cookies. Durch die Nutzung dieser Webseite erklären Sie sich damit einverstanden, dass Cookies gesetzt werden. Mehr erfahren