Menü ausblenden
Menü ausblenden   Internetchemie   |     About   |   Kontakt   |   Impressum   |   Datenschutz   |   Sitemap
Menü ausblenden   Chemie Index   |   Chemie-Lexikon   |   Chemikalien   |   Elemente
Menü ausblenden   Geräte + Instrumente   |  
Menü ausblenden   Jobbörse, Stellenangebote   |  
Menü ausblenden   Crowdfunding Chemie   |     Text veröffentlichen
Home und Neuigkeiten
Chemie A - Z
Produkte, Geräte für Labor und Industrie
Chemikalien und chemische Verbindungen
Stellenbörse für Chemie-Jobs
Impressum, Kontakt
Crowdfunding Chemie

 

Molekulare Logik

Chemiker der Universität Jena entwickeln Zuckernachweis als logischen Schalter.




Abbildung: Chemiker entwickeln eine chemische Alternative zu elektronischen Bauelementen für die Informationsverarbeitung. [Bildquelle: JACS, DOI 10.1021/ja303214r]
Molekularer Schaltkreis

Immer schneller, immer leistungsfähiger - so lässt sich die Entwicklung in der IT-Branche bis heute wohl treffend beschreiben: Mit stetiger Regelmäßigkeit verdoppelt sich die Rechenleistung von Computern etwa alle zwei Jahre. Immer kleinere Transistoren, die in immer größerer Dichte und Zahl in integrierten Schaltkreisen Platz finden, machen es möglich.

Doch diese Gesetzmäßigkeit könnte schon bald außer Kraft gesetzt sein.

"Die gegenwärtig genutzten Techniken für die Produktion von Mikrochips kommen an ihre Grenzen", sagt Prof. Dr. Alexander Schiller von der Friedrich-Schiller-Universität Jena. Das Ende der Miniaturisierung sei in etwa zehn Jahren erreicht, so der Chemiker weiter. "Um den dennoch stetig weiter wachsenden Bedarf an immer leistungsfähigeren Rechner-Bauteilen zu decken, brauchen wir alternative Konzepte."

Der Juniorprofessor und seine Kollegen tüfteln schon seit einiger Zeit an einer chemischen Alternative zu elektronischen Bauelementen. Wie die Chemiker der Uni Jena jetzt im "Journal of the American Chemical Society" berichten, haben sie ein Molekül-basiertes System entwickelt, das logische Funktionen ausführen kann (siehe unten). Anders als in einem elektronischen Schaltkreis, bei dem Informationen in Form elektrischer Impulse verarbeitet werden, funktioniert dieses mit chemischen Signalen. Die American Chemical Society hat diese vielversprechende Idee der Chemiker um Prof. Schiller zudem mit einem "Spotlight" gewürdigt: einem eigenen Artikel, der das Thema einer über die Wissenschaft hinausgehenden Öffentlichkeit nahebringen möchte.

Der chemische "Schaltkreis" enthält mehrere Komponenten: Einen fluoreszierenden Farbstoff und einen sogenannten Fluoreszenzlöscher. "Liegen beide Komponenten vor, so kann der Farbstoff seine Wirkung nicht entfalten und wir sehen kein Fluoreszenzsignal", so Schiller. Kommen jedoch bestimmte Zuckermoleküle ins Spiel, reagiert der Fluoreszenzlöscher mit dem Zucker und verliert so seine Fähigkeit, das Fluoreszenzsignal zu unterdrücken. "Daraufhin beginnt der Farbstoff zu fluoreszieren."

Dieses Setting erlaube nun verschiedene logische Verknüpfungen, wie Prof. Schiller erläutert, "wobei wir die Komponenten als chemische ,Input'-Signale und die zu messende Fluoreszenz als ,Output'-Signal annehmen." Je nachdem ob Farbstoff, Fluoreszenzlöscher und/oder Zucker als Signalgeber vorliegen, resultiert ein Fluoreszenzsignal - "1" - oder kein Signal - "0". "Diese Outputs lassen sich dann mit anderen Funktionen koppeln." Mögliche Anwendungen solcher molekularen logischen Schaltelemente werden schon heute im Bereich intelligenter Materialien oder in der klinischen Diagnostik diskutiert. Ihr Vorteil gegenüber rein elektronischen Schaltkreisen sei ihre enorme Signal-Variabilität. "Diese chemische Vielfalt ist bestens geeignet, um Schaltungen auf Platinen in der Zukunft zu ergänzen und vielleicht sogar zu ersetzen."


Zusatzinformationen:

Martin Elstner, Klaus Weisshart, Klaus Müllen, Alexander Schiller:
Molecular Logic with a Saccharide Probe on the Few-Molecules Level.
In: Journal of the American Chemical Society; 134 (19), pp 8098 - 8100, 2012, DOI 10.1021/ja303214r

Jeffrey M. Perkel:
A Sugar-Sensing Molecular Logic Gate? Sweet!.
In: Journal of the American Chemical Society; 134 (23), pp 9535 - 9536, 2012, DOI 10.1021/ja3050647

Quelle: Friedrich-Schiller-Universität, Jena

 


Aktualisiert am 14.07.2012.



© 1996 - 2024 Internetchemie ChemLin






Akzeptieren

Diese Website verwendet Cookies. Durch die Nutzung dieser Webseite erklären Sie sich damit einverstanden, dass Cookies gesetzt werden. Mehr erfahren