Welche Organismen an diesem Prozess beteiligt sind und wie sie dabei zusammenarbeiten, war bisher allerdings unklar. Mit modernen Analyseverfahren ist es Wissenschaftlern des Helmholtz-Zentrums für Umweltforschung (UFZ) nun zum ersten Mal gelungen, anhand von Proteinen den Weg des Schadstoffs durch eine solche Bakteriengemeinschaft zu verfolgen.
Demnach kooperieren beim Benzolabbau drei Teams von mikrobiellen Schadstoffbeseitigern, die jeweils unterschiedliche Aufgaben übernehmen.
Die Methode könne auch helfen, die komplexen Vorgänge in anderen Bakterien-Kooperativen aufzuklären, schreiben die Forscher im Fachmagazin ISME Journal, das gemeinsam von der Nature Publishing Group und der International Society for Microbial Ecology herausgegeben wird.
Auf dem Gelände des ehemaligen Hydrierwerkes Zeitz in Sachsen-Anhalt finden sich noch immer die chemischen Spuren vergangener Zeiten. 1938 hatte die Anlage ihren Betrieb aufgenommen, um aus Braunkohle flüssige Treibstoffe und Schmiermittel zu erzeugen. Als die Alliierten das Werk in den letzten Monaten des Zweiten Weltkrieges bombardierten und weitgehend zerstörten, sickerten große Mengen Schadstoffe in den Boden und ins Grundwasser. Weitere Belastungen kamen zu DDR-Zeiten hinzu, als sich Zeitz zu einem Zentrum der Kohle- und Erdölverarbeitung entwickelte. Inzwischen sind die alten Produktionsanlagen abgerissen und die erforderlichen Sanierungsarbeiten werden, gesteuert durch das Land Sachsen-Anhalt, kontinuierlich weitergeführt. Restbelastungen, insbesondere in den tieferen Bereichen, werden jedoch verbleiben. In Boden und Grundwasser findet sich vor allem eine Gruppe von Verbindungen, die Chemiker unter dem Kürzel BTEX zusammenfassen. Dahinter verbergen sich die leicht flüchtigen aromatischen Kohlenwasserstoffe Benzol, Toluol, Ethylbenzol und Xylol. Vor allem Benzol lässt sich in relevanten Konzentrationen nachweisen.
Benzol - ein tückischer Schadstoff
Benzol - neuere Bezeichnung: Benzen - hat für die Umwelt eine besondere Bedeutung. Denn diese Verbindung ist krebserregend und schädigt das zentrale Nervensystem. Bei schweren Vergiftungen kann es zu Bewusstlosigkeit und Atemlähmung kommen und auch in geringeren Konzentrationen drohen Gesundheitsschäden.
Aus Benzol werden die verschiedensten Produkte von Kunststoffen und Harzen bis hin zu Pflanzenschutzmitteln und Farben hergestellt, zudem ist es ein wichtiger Bestandteil von Benzin. Belastungsquellen gibt es also viele. Benzol kann bei Chemieunfällen in die Umwelt gelangen und findet sich mitunter auch in der Umgebung von Erdölraffinerien und Tanklagern, Tankstellen und vielbefahrenen Straßen. In Zeitz untersuchen Wissenschaftler des UFZ deshalb schon seit Jahren, wie sich solche Belastungen sanieren lassen. Das ist auch für andere Regionen interessant. "In Deutschland gibt es zwar seit Jahren immer weniger Probleme mit diesem Schadstoff", sagt Martin von Bergen, der am UFZ das Department Proteomik leitet. Für andere Länder aber gilt das keineswegs, weiß der Experte: "In China zum Beispiel nimmt die Belastung stark zu". So flossen dort im November 2005 nach einem Unfall in einem Chemiewerk etwa 100 Tonnen Benzol in den Fluss Songhua. Ein 80 Kilometer langer Giftteppich entstand und erreichte die Millionenstadt Harbin. Die Trinkwasserversorgung der Metropole musste unterbrochen werden.
Es gibt allerdings Bakterien, die eine solche Belastung auch wieder abbauen können. Solange genug Sauerstoff vorhanden ist, geht das sogar relativ schnell. Doch wenn die Substanz im Boden versickert, erreicht sie bald Regionen, die nur wenig oder gar keinen Sauerstoff enthalten. "Und was dort passiert, weiß noch niemand so genau", sagt Martin von Bergen. Zwar ist klar, dass auch bei Sauerstoffmangel ein Abbau stattfindet. Das haben bereits frühere Studien am UFZ ergeben, an denen vor allem Wissenschaftler des Departments für Isotopenbiogeochemie mitgearbeitet haben. Einen Teil dieses Prozesses können Biochemiker auch schon recht gut erklären. Doch wie insbesondere der erste Schritt des biochemischen Angriffs auf das Benzol aussieht, ist ihnen noch immer ein Rätsel. Und auch von den beteiligten Bakterien und ihren jeweiligen Aufgaben hatten Forscher bis vor kurzem nur eingeschränkte Vorstellungen.
Spurensuche in der Mikroben-Welt
Letzteres aber hat sich nun geändert. Die neue Studie, an der Wissenschaftler der UFZ-Departments für Bodenökologie, Umweltmikrobiologie, Isotopenbiogeochemie und Proteomik mitgearbeitet haben, zeichnet zum ersten Mal ein recht detailliertes Bild von der Gemeinschaft der Benzol-Abbauer. "Es ging uns dabei nicht darum, jede einzelne der beteiligten Arten zu identifizieren", erklärt Martin von Bergen. Das ist in Umweltproben generell schwierig, weil viele der darin vorkommenden Arten noch gar nicht beschrieben sind. Zudem ist "Art" im Reich der Mikroben ein eher schwammiger Begriff, mit dessen Definition sich selbst Experten schwer tun.
Was man dagegen recht gut unterscheiden kann, sind Gruppen mit unterschiedlicher Funktion. "Bakterien sind Teamplayer", erklärt Martin von Bergen. Ähnlich wie in einer Firma jeweils eigene Spezialisten fürs Management, für die Buchhaltung oder die Produktion zuständig sind, müssen auch beim Benzolabbau Mikroorganismen mit unterschiedlichen Talenten zusammenarbeiten. Ob dabei eine oder mehrere Arten an einer Aufgabe mitwirken, ist zweitrangig. Hauptsache, der Job wird erledigt.
Um herauszufinden, wie diese Arbeitsteilung unter den mikrobiellen Benzol-Fans aussieht, haben sich die Forscher Bakteriengemeinschaften aus einem belasteten Grundwasserleiter in Zeitz ins Labor geholt. Dort haben sie die Proteine der Organismen einer sogenannten Isotopenanalyse unterzogen. Dieses Verfahren beruht darauf, dass es in der Natur zwei unterschiedlich schwere stabile Varianten von Kohlenstoff gibt. Das leichtere und weitaus häufigere dieser sogenannten Isotope verbirgt sich hinter dem Kürzel 12C, das schwerere heißt 13C. Die Forscher haben ihren Bakterien Benzolmoleküle angeboten, die große Mengen der schwereren Version enthielten. Dann haben sie untersucht, in welchem Umfang die Organismen dieses Isotop in ihre Proteine einbauen. Das lässt sich herausfinden, indem man Bruchstücke der Proteine mit einem sogenannten Massenspektrometer analysiert.
Das Team der Schadstoffbeseitiger
"Diese Untersuchung liefert zwei interessante Informationen", erklärt Martin von Bergen. Durch Vergleiche mit Datenbanken kann man zum einen bestimmen, aus welchen Bakteriengruppen die Proteinfragmente stammen. Um diese Ergebnisse zu überprüfen, haben die Forscher mit modernen Untersuchungsmethoden auch einen Blick ins Erbgut der Mikroben-Crew geworfen. "So konnten wir einen genetischen Überblick über die Mitglieder der Bakteriengemeinschaft gewinnen", sagt der UFZ-Forscher.
Noch interessanter aber war das zweite Resultat der Isotopenanalysen. Denn diese verraten auch einiges über den Stoffwechsel der einzelnen Organismen. Entscheidend ist dabei, nach welchen Zeiträumen sich welche Mengen 13C in den Proteinen finden. "Je nach Nahrungsquelle gibt es da bestimmte typische Muster", erläutert Martin von Bergen. So haben die Forscher eine Gruppe von Bakterien identifiziert, bei denen der 13C-Gehalt sofort ansteigt und sich dann kaum noch weiter erhöht. Diese Mikroben ernähren sich direkt vom 13C-Benzol. Bei einer zweiten Gruppe tauchen dagegen erst mit der Zeit immer größere Mengen des Isotops in den Proteinen auf. Diese Organismen verwerten den Schadstoff nicht direkt, sondern leben von dessen Abbauprodukten. Und schließlich gibt es noch eine dritte Gruppe, deren 13C-Gehalt die ganze Zeit über niedrig bleibt. Dabei handelt es sich vermutlich um Aasfresser, die von den Überresten anderer Bakterien leben.
"Es ist uns damit gelungen, den Weg von Atomen des Benzols durch die ganze Bakteriengemeinschaft zu verfolgen", freut sich Martin von Bergen. Die Forscher haben dabei nicht nur herausgefunden, wer was in welchen Mengen frisst. Sie wissen nun auch mehr darüber, wie die Zusammenarbeit der unterschiedlichen Bakterienteams funktioniert. So produzieren die Direktverwerter beim Abbau des Benzols vermutlich sowohl Acetat als auch Wasserstoff. Beide Substanzen aber müssen sie loswerden, sonst hemmen sie ihren Stoffwechsel. Dabei kommen ihnen die Organismen der zweiten Gruppe zu Hilfe, die nur indirekt von dem Schadstoff leben. Sie nutzen das Acetat als Kohlenstoffquelle und entfernen den Wasserstoff.
Ein neuer Blick auf Klärschlamm und Darm
"Solche Kooperationen gibt es natürlich nicht nur bei den Benzol-Abbauern", sagt Martin von Bergen. Er und seine Kollegen hoffen, mithilfe ihrer Methoden künftig auch andere komplexe Bakteriengemeinschaften analysieren zu können. So ließe sich beispielsweise herausfinden, wie die verschiedenen Mikroben in Biogasanlagen oder im Klärschlamm zusammenarbeiten. Wer das versteht, kann die Prozesse in solchen Anlagen möglicherweise besser steuern. Und auch für die Medizin lässt sich durch solche Untersuchungen einiges lernen. Man weiß zum Beispiel, dass dünne Menschen andere Mikroorganismen im Magen-Darm-Trakt haben als dicke. Zudem scheint die Bakterienflora auch das Immunsystem zu beeinflussen. Über all diese Zusammenhänge wüsste man gern mehr, um Menschen eventuell beim Abnehmen helfen oder ihre Abwehrkräfte stärken zu können.
"Bakteriengemeinschaften leben überall, vom Blumentopf bis zum Inneren des menschlichen Körpers", resümiert Martin von Bergen. Früher haben Mikrobiologen vor allem untersucht, welche Organismen wo vorkommen. Nun aber wollen sie mehr über deren Aktivitäten und Kooperationen wissen. Diese "funktionelle Biodiversität" ist für Martin von Bergen und seine Kollegen ein Thema mit Zukunft. Auch im Rahmen des neuen Biodiversitätsforschungszentrums der Deutschen Forschungsgemeinschaft DFG, an dem neben den Universitäten Leipzig, Halle und Jena auch das UFZ beteiligt ist, können diese spannenden Ansätze eine Rolle spielen.
Im Helmholtz-Zentrum für Umweltforschung (UFZ) erforschen Wissenschaftler die Ursachen und Folgen der weit reichenden Veränderungen der Umwelt. Sie befassen sich mit Wasserressourcen, biologischer Vielfalt, den Folgen des Klimawandels und Anpassungsmöglichkeiten, Umwelt- und Biotechnologien, Bioenergie, dem Verhalten von Chemikalien in der Umwelt, ihrer Wirkung auf die Gesundheit, Modellierung und sozialwissenschaftlichen Fragestellungen. Ihr Leitmotiv: Unsere Forschung dient der nachhaltigen Nutzung natürlicher Ressourcen und hilft, diese Lebensgrundlagen unter dem Einfluss des globalen Wandels langfristig zu sichern. Das UFZ beschäftigt an den Standorten Leipzig, Halle und Magdeburg 1000 Mitarbeiter. Es wird vom Bund sowie von Sachsen und Sachsen-Anhalt finanziert.
Die Helmholtz-Gemeinschaft leistet Beiträge zur Lösung großer und drängender Fragen von Gesellschaft, Wissenschaft und Wirtschaft durch wissenschaftliche Spitzenleistungen in sechs Forschungsbereichen: Energie, Erde und Umwelt, Gesundheit, Schlüsseltechnologien, Struktur der Materie, Verkehr und Weltraum. Die Helmholtz-Gemeinschaft ist mit über 33.000 Mitarbeiterinnen und Mitarbeitern in 18 Forschungszentren und einem Jahresbudget von rund 3,4 Milliarden Euro die größte Wissenschaftsorganisation Deutschlands. Ihre Arbeit steht in der Tradition des Naturforschers Hermann von Helmholtz (1821-1894).
[Kerstin Viering]
Zusatzinformationen:
Martin Taubert, Carsten Vogt, Tesfaye Wubet, Sabine Kleinsteuber, Mika T Tarkka, Hauke Harms, François Buscot, Hans-Hermann Richnow, Martin von Bergen, Jana Seifert:
Protein-SIP enables time-resolved analysis of the carbon flux in a sulfate-reducing, benzene-degrading microbial consortium.
In: The ISME Journal; online erschienen am 12. Juli 2012; open access, DOI 10.1038/ismej.2012.68
Quelle: Helmholtz-Zentrum für Umweltforschung, UFZ
Aktualisiert am 26.07.2012.
Permalink: https://www.internetchemie.info/news/2012/jul12/benzol-abbauende-bakterien.php
© 1996 - 2024 Internetchemie ChemLin