Menü ausblenden
Menü ausblenden   Internetchemie   |     About   |   Kontakt   |   Impressum   |   Datenschutz   |   Sitemap
Menü ausblenden   Chemie Index   |   Chemie-Lexikon   |   Chemikalien   |   Elemente
Menü ausblenden   Geräte + Instrumente   |  
Menü ausblenden   Jobbörse, Stellenangebote   |  
Menü ausblenden   Crowdfunding Chemie   |     Text veröffentlichen
Home und Neuigkeiten
Chemie A - Z
Produkte, Geräte für Labor und Industrie
Chemikalien und chemische Verbindungen
Stellenbörse für Chemie-Jobs
Impressum, Kontakt
Crowdfunding Chemie

 

Schwefel-Chemie explodierender Sterne

Meteorit birgt Hinweise für die Bildung von Schwefelmolekülen in den Überresten einer Supernova.




Abbildung: Sternenstaub aus einer Supernova - Die elektronenmikroskopische Aufnahme zeigt ein Siliziumkarbid-Korn aus dem Meteoriten Murchison. Das im Durchmesser knapp einen Mikrometer große Staubteilchen stammt aus einer Supernova, wie eine Analyse von Isotopen ergeben hat. [Bildquelle: Peter Hoppe, MPI für Chemie]
Siliziumkarbid-Korn aus dem Meteoriten Murchison

Forscher verstehen grundlegende chemische Abläufe in Vorläufern unseres Sonnensystems nun ein bisschen besser: Ein internationales Team um Peter Hoppe, Forscher am Max-Planck-Institut für Chemie in Mainz, hat nun mit einer sehr empfindlichen Methode Staubeinschlüsse im 4,6 Milliarden Jahre alten Meteoriten Murchison, der bereits 1969 gefunden worden war, untersucht.

Die Sternenstaubkörner stammen aus einer Supernova und sind älter als unser Sonnensystem.

Dabei entdeckten die Wissenschaftler chemische Isotope, die darauf hinweisen, dass sich in den Überresten explodierender Sterne Schwefelverbindungen wie Siliziumsulfid gebildet haben.

Schwefelmoleküle sind zentral für zahlreiche Prozesse und letztendlich wichtig für die Entstehung von Leben.

Modelle sagten die Bildung von Schwefelmolekülen in den Überresten von explodierenden Sternen - den Supernovae - bereits voraus. Den Nachweis dafür erbrachte jetzt ein Forscherteam aus Deutschland, Japan und den USA mit Hilfe von Isotopenanalysen von Meteoriten-Sternenstaub.

Das Team um Peter Hoppe, Astrophysiker am Mainzer Max-Planck-Institut für Chemie, isolierte zunächst tausende, etwa 0,1 bis 1 Mikrometer große Siliziumkarbid-Sternenstaubkörnchen aus dem Meteoriten Murchinson, den man bereits 1969 auf der Erde fand. Die Sternenstaubkörner stammen aus einer Supernova und sind älter als unser Sonnensystem. In den Proben bestimmten die Forscher mit einem hochempfindlichen Spektrometer, der sogenannten NanoSIMS, die Isotopenverteilung. Hierbei schießt ein Ionenstrahl auf die einzelnen Sternenstaubkörner und löst aus der Oberfläche Atome heraus. Ein Spektrometer trennt sie dann nach ihrer Masse und misst die Isotopen-Häufigkeit. Isotope eines chemischen Elements besitzen die gleiche Anzahl an Protonen, aber unterschiedlich viele Neutronen.

Bei fünf Siliziumkarbid-Proben fanden die Astrophysiker eine ungewöhnliche Isotopenverteilung: Sie wiesen viele schwere Silizium- und wenig schwere Schwefelisotope nach, was nicht zu bisherigen Modellen über die Isotopenhäufigkeiten in Sternen passt. Gleichzeitig konnten sie Zerfallsprodukte von radioaktivem Titan nachweisen, welches nur in den innersten Zonen einer Supernova entstanden sein kann. Das wiederum beweist, dass die jetzt analysierten Sternenstaubkörner tatsächlich aus einer Supernova stammen.

 

Ein Beleg für das Modell von der Chemie in Supernova-Überresten

"Die von uns gefundenen Sternenstaubkörner sind extrem selten. Bezogen auf das gesamte Meteoritenmaterial machen sie nur etwa den 100 Millionstel Teil aus. Dass wir sie gefunden haben, ist großer Zufall - besonders, da wir eigentlich auf der Suche nach Siliziumkarbid-Sternenstaub mit isotopisch leichtem Silizium waren", sagt Peter Hoppe. "Die Signatur mit isotopisch schwerem Silizium und leichtem Schwefel kann nur dadurch plausibel erklärt werden, dass in den innersten Zonen der Überreste einer Supernova Siliziumsulfid-Moleküle gebildet wurden." Anschließend wurden die Sulfid-Moleküle von sich bildenden Siliziumkarbid-Kristallen umschlossen. Diese Kristalle sind dann vor etwa 4,6 Milliarden Jahren in den solaren Urnebel gelangt und wurden in die entstehenden Planeten und Planetoiden eingebaut, von denen auch der Meteorit Murchison stammt.

Mit Hilfe von Infrarot-Spektren hat man schon Kohlenmonoxid und Siliziumoxid in den Überresten von Supernova-Explosionen nachgewiesen. In Modellen wurde zwar auch die Bildung von Schwefelmolekülen schon vorausgesagt, konnte aber bisher nicht bewiesen werden. Die Messungen am Siliziumkarbid-Sternenstaub bestätigen nun die Vorhersagen, nach denen in den inneren Zonen des Supernova-Auswurfmaterials einige Monate nach der Explosion bei Temperaturen von mehreren Tausend Grad Celsius Siliziumsulfid-Moleküle entstehen.

Der untersuchte Meteorit verdankt seinen Namen der australischen Stadt Murchison, in der er bereits 1969 gefunden wurde. Für Astronomen ist er ein unerschöpfliches Tagebuch zur Entstehung unseres Sonnensystems, da er seit seiner Bildung nahezu unverändert blieb. Neben den Sternenstaub-Einschlüssen aus dem Auswurf von Supernovae transportierte Murchison auch Staub auf die Erde, der sich im Wind Roter Riesensterne gebildet hat. Durch weitere Analysen hoffen die Forscher noch mehr über den Ursprung der Sterne zu lernen, aus denen sie entstanden sind.


Zusatzinformationen:

Peter Hoppe, Wataru Fujiya und Ernst Zinner:
Sulfur Molecule Chemistry in Supernova Ejecta Recorded by Silicon Carbide Stardust.
In: Astrophysical Journal Letters; Volume 745, Number 2, 11. Januar 2012, DOI 10.1088/2041-8205/745/2/L26

Quelle: Max-Planck-Institut für Chemie, Mainz

 


Aktualisiert am 19.01.2012.



© 1996 - 2024 Internetchemie ChemLin






Akzeptieren

Diese Website verwendet Cookies. Durch die Nutzung dieser Webseite erklären Sie sich damit einverstanden, dass Cookies gesetzt werden. Mehr erfahren