Menü ausblenden
Menü ausblenden   Internetchemie   |     About   |   Kontakt   |   Impressum   |   Datenschutz   |   Sitemap
Menü ausblenden   Chemie Index   |   Chemie-Lexikon   |   Chemikalien   |   Elemente
Menü ausblenden   Geräte + Instrumente   |  
Menü ausblenden   Jobbörse, Stellenangebote   |  
Menü ausblenden   Crowdfunding Chemie   |     Text veröffentlichen
Home und Neuigkeiten
Chemie A - Z
Produkte, Geräte für Labor und Industrie
Chemikalien und chemische Verbindungen
Stellenbörse für Chemie-Jobs
Impressum, Kontakt
Crowdfunding Chemie

 

Katalytische Hydrierung von Kohlendioxid zu Ameisensäure

Doppelrolle für Kohlendioxid: Prozess zur kontinuierlichen Hydrierung von CO2 zu reiner Ameisensäure in überkritischem Kohlendioxid.



Schema: Reine Ameisensäure lässt sich aus Kohlendioxid und Wasserstoff kontinuierlich in einem integrierten Verfahren erhalten. Dabei werden ein immobilisierter metallorganischer Rutheniumkomplex und eine nichtflüchtige Base in einer ionischen Flüssigkeit (IL) mit überkritischem (sc) CO2 kombiniert, das gleichzeitig als Reaktant und Extraktionsmittel fungiert. [Quelle: Angewandte Chemie]
Ameisensäure aus Kohlendioxid

Um den Verbrauch fossiler Rohstoffe zu reduzieren und gleichzeitig die CO2-Bilanz von Kraftstoffen und chemischen Produkten zu verbessern könnte die Verwendung von Kohlendioxid als Kohlenstoffquelle eine attraktive Option sein.

Deutsche Wissenschaftler stellten in der Zeitschrift Angewandte Chemie [siehe unten] eine neue Methode vor, mit der Kohlendioxid katalytisch zu Ameisensäure hydriert wird.

Dabei ist Kohlendioxid nicht nur Ausgangsstoff, sondern dient, in überkritischem Zustand, gleichzeitig als Lösungsmittel für die Abtrennung des Produkts.

Mit diesem integrierten Verfahren lässt sich erstmals in einem einzigen Prozessschritt freie Ameisensäure direkt als Produkt gewinnen.

Die Hydrierung von CO2 zu Ameisensäure (HCOOH) wird intensiv erforscht, denn sie eröffnet einen direkten Zugang zu chemischen Produkten auf der Basis von Abfallstoffen aus der energetischen Nutzung fossiler Brennstoffe. Ameisensäure ist ein wichtiges Produkt der chemischen Industrie mit vielfältigen Anwendungen z.B. in der Landwirtschaft, der Lebensmitteltechnologie und der Lederwarenindustrie. Zudem wird sie als möglicher Wasserstoffspeicher in Erwägung gezogen. So könnten mit Brennstoffzellen betriebene Fahrzeuge Ameisensäure tanken, aus der dann Wasserstoff katalytisch freigesetzt würde.

Bereits seit Mitte der 1970er Jahre wird an homogenen Katalysatoren für die Herstellung von Ameisensäure aus CO2 geforscht. Die Tücke liegt darin, dass es sich um eine Gleichgewichtsreaktion handelt, deren Gleichgewicht deutlich auf der Seite der Edukte liegt. Um die ständig ablaufende Rückreaktion zu unterdrücken, muss die Ameisensäure abgefangen werden - in Form von Salzen, Addukten oder Derivaten - um sie aus der Gleichgewichtsbilanz zu entfernen. Damit schließlich die gewünschte freie Ameisensäure erhalten werden kann, sind zusätzliche Verfahrensschritte nötig, um die Addukte vom Katalysator zu trennen und anschließend die Ameisensäure wieder freizusetzen und zu isolieren.

Das Team um Professor Walter Leitner von der RWTH Aachen hat nun ein neues Konzept entwickelt, mit dem reine Ameisensäure in einem kontinuierlichen Verfahren produziert werden kann: Reaktion und Abtrennung laufen dabei integriert in einer einzigen Prozesseinheit ab.

Der Trick liegt in einem zweiphasigen Reaktionssystem mit überkritischem CO2 als mobiler Phase und einem flüssigen Salz - einer ionischen Flüssigkeit - als stationärer Phase: Die ionische Flüssigkeit löst den Katalysator und die Base zum Stabilisieren der Ameisensäure und hält beide im Reaktorraum zurück. Das CO2 strömt bei Drücken und Temperaturen oberhalb der kritischen Daten (74 bar, 31 Grad Celsius) durch den Reaktor und löst die gebildete Ameisensäure selektiv aus der Mischung heraus. Die Doppelrolle von CO2 sowohl als Reaktant als auch als extraktive Phase hat entscheidende Vorteile: Das Produkt wird kontinuierlich extrahiert und aus dem Reaktor geschleust, somit kann sich das Gleichgewicht immer wieder neu einstellen. Außerhalb des Reaktors lässt sich die freie Ameisensäure durch Druckabsenkung oder Auswaschen direkt aus dem CO2-Strom in reiner Form gewinnen. Ionische Flüssigkeiten lösen sich nicht in überkritischem CO2, ebensowenig wie der Katalysator und die Base, sodass sie das Produkt nicht verunreinigen. Das Verfahren kann so kontinuierlich laufen. In Laborversuchen wurde ein stabiler Betrieb über mehr als 200 Stunden demonstriert.

"Unsere Ergebnisse zeigen am Beispiel der Ameisensäure, dass der gezielte Einsatz von modernen Lösungsmittelkonzepten in kontinuierlichen Reaktoranlagen Stoffumwandlungen ermöglicht, die unter konventionellen Bedingungen nicht durchgeführt werden können", sagt Leitner. "Natürlich kann die Thermodynamik damit nicht 'besiegt' werden - aber es ergeben sich vielfältige Möglichkeiten der Integration von Reaktion und Stofftrennung, die neue Wege zu effizienteren und nachhaltigeren Verfahren eröffnen können".

 

Über den Autor

Walter Leitner ist Professor für Technische Chemie und Petrolchemie am Institut für Technische und Makromolekulare Chemie der RWTH Aachen. Die Nutzung von Kohlendioxid in katalytischen Verfahren ist seit über 20 Jahren Gegenstand seiner Forschungsinteressen. Er ist Auswärtiges Wissenschaftliches Mitglied am Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, und Wissenschaftlicher Direktor des Katalysezentrums CAT, einer gemeinsamen Forschungseinrichtung von Bayer und der RWTH Aachen.


Zusatzinformationen:

Sebastian Wesselbaum, Dr. Ulrich Hintermair, Prof. Dr. Walter Leitner:
Continuous-Flow Hydrogenation of Carbon Dioxide to Pure Formic Acid using an Integrated scCO2 Process with Immobilized Catalyst and Base.
In: Angewandte Chemie; online veröffentlicht am 13. Juli 2012, DOI 10.1002/ange.201203185

Quelle: Angewandte Chemie, Presseinformation Nr. 30/2012

 


Aktualisiert am 06.08.2012.



© 1996 - 2024 Internetchemie ChemLin






Akzeptieren

Diese Website verwendet Cookies. Durch die Nutzung dieser Webseite erklären Sie sich damit einverstanden, dass Cookies gesetzt werden. Mehr erfahren