Die Pflanzenforscher Rainer Hedrich und Dietmar Geiger von der Uni Würzburg haben es geklärt.
Trocknet der Boden aus, müssen Pflanzen ihren Wasserverbrauch einschränken. Dazu produzieren sie in der Wurzel das Hormon Abscisinsäure und schicken es über das Leitungssystem in die Blätter. Dort sorgt das Hormon im Verbund mit Nitrat dafür, dass die Blattporen sich schließen und kein wertvolles Wasser mehr verdunstet.
Über die Blattporen verlieren Pflanzen einen Großteil ihres Wassers. Verzichten können sie auf die Poren aber nicht, denn ohne sie wäre kein Austausch von Kohlendioxid und anderen Gasen mit der Umgebung möglich - und damit auch keine Photosynthese und kein Wachstum. Also müssen Pflanzen die Öffnungsweite der Blattporen bedarfsgerecht regulieren.
Schließzellen regulieren Weite der Blattporen
Ob die Blattporen zu oder auf sind, hängt von den bohnenförmigen Schließzellen ab. Sie sitzen in der Haut der Blätter; jeweils zwei von ihnen liegen sich gegenüber. Sind die Schließzellen prall mit Ionen und Wasser gefüllt, weichen sie auseinander und öffnen die Pore. Erschlaffen sie, wird die Pore immer kleiner, bis das Wasserdampf-Ventil am Ende ganz geschlossen ist.
Bei Trockenheit sind die Schließzellen der Zielort für das Hormon Abscisinsäure: "Wenn es dort ankommt, bindet es an seinen Rezeptor, der wiederum über zwei Enzyme den Anionenkanal SLAC1 reguliert", sagt Professor Rainer Hedrich. Die Folge: Ionen und Wasser fließen aus den Schließzellen hinaus. Sie lassen gewissermaßen Druck ab, so dass die Poren sich schließen und die Wasserverdunstung aus den Blättern eingeschränkt wird.
Publikation in "Science Signaling"
Neue Erkenntnisse zu diesem Regulationsmechanismus stellen Professor Rainer Hedrich und Dr. Dietmar Geiger vom Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik der Universität Würzburg in der aktuellen Ausgabe der renommierten Fachzeitschrift "Science Signaling" vor [siehe unten]. Detailliert beschreiben sie die Natur des Anionenkanals SLAC1 sowie des neu entdeckten Anionenkanals SLAH3. Seine Besonderheit: Zur Aktivierung braucht er sowohl Abscisinsäure als auch Nitrat.
Nitrat als Co-Botenstoff der Abscisinsäure
Nitrat ist vor allem als Bestandteil landwirtschaftlicher Dünger bekannt. Pflanzen ziehen Nitrat aus dem Boden, transportieren es in die Blätter und nutzen es dort als Stickstoffquelle für die Produktion von Proteinen. Dieser Prozess kommt richtig in Schwung, wenn die Photosynthese auf Hochtouren läuft - denn sie liefert das Kohlenstoffgerüst, das der Pflanze als Grundbaustein für Proteine dient. Wenn die Photosynthese gut läuft, können die Blätter auch viel Nitrat verarbeiten.
Von der Wurzel in die Blätter gelangt das Nitrat in Wasser gelöst. Den Nachschub an Nitrat kann die Pflanze auf den Bedarf abstimmen, indem sie den Wasserstrom steigert oder bremst. Dazu öffnet oder schließt sie ihre Ventile - dadurch kann sie die Sogwirkung regulieren, die das über die Blätter verdunstende Wasser bis in die Wurzel hinein ausübt.
Schließzellen messen Nitratgehalt im Blatt
"Damit diese Regulation funktioniert, müssen die Schließzellen dazu in der Lage sein, den Nitratgehalt in ihrer Umgebung zu messen", sagt Professor Hedrich. Steigt der Nitratgehalt im Blatt stark an, zeigt das der Pflanze an, dass sie zurzeit nicht mehr Nitrat verarbeiten kann, weil die Photosynthese nicht optimal arbeitet. Sie kann also in diesem Moment auf Kohlendioxid verzichten, die Blattporen schließen und so Wasser sparen. Nitrat wirkt in diesem Fall wie ein Antitranspirant.
Als Sensor für diesen Prozess haben die Würzburger Biophysiker den Anionenkanal SLAH3 identifiziert: Übersteigt der Nitratgehalt in den Schließzellen eine bestimmte Schwelle und liegt gleichzeitig eine kritische Menge Abscisinsäure vor, wird der Kanal aktiviert und setzt das Schließen der Blattporen in Gang.
Anionenkanal als multi-sensorischer Regler
Hedrichs Fazit: "Dieser Anionenkanal ist eine multi-sensorische Schnittstelle. Er misst das Verhältnis von Wasserverbrauch, Nitratgehalt und Photosyntheseleistung der Pflanze, integriert die Messwerte und reguliert als Reaktion darauf den Öffnungszustand der Blattporen." So ermöglicht er es der Pflanze, bei Trockenheit den Wasserverlust möglichst gering zu halten, ohne gleichzeitig die Photosyntheseleistung allzu stark einzuschränken.
Zusatzinformationen:
Dietmar Geiger, Tobias Maierhofer, Khaled A. S. AL-Rasheid, Sönke Scherzer, Patrick Mumm, Anja Liese, Peter Ache, Christian Wellmann, Irene Marten, Erwin Grill, Tina Romeis, and Rainer Hedrich:
Stomatal Closure by Fast Abscisic Acid Signaling Is Mediated by the Guard Cell Anion Channel SLAH3 and the Receptor RCAR1.
In: Science Signaling; Sci. Signal., Vol. 4, Issue 173, p. ra32, 17 May 2011, DOI 10.1126/scisignal.2001346
Quelle: Julius-Maximilians-Universität, Würzburg
Aktualisiert am 18.05.2011.
Permalink: https://www.internetchemie.info/news/2011/may11/blattsporen-regulation.php
© 1996 - 2024 Internetchemie ChemLin